博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[LeetCode] 768. Max Chunks To Make Sorted II 可排序的最大块数 II
阅读量:4876 次
发布时间:2019-06-11

本文共 4033 字,大约阅读时间需要 13 分钟。

This question is the same as "Max Chunks to Make Sorted" except the integers of the given array are not necessarily distinct, the input array could be up to length 2000, and the elements could be up to 10**8.


Given an array arr of integers (not necessarily distinct), we split the array into some number of "chunks" (partitions), and individually sort each chunk.  After concatenating them, the result equals the sorted array.

What is the most number of chunks we could have made?

Example 1:

Input: arr = [5,4,3,2,1]Output: 1Explanation:Splitting into two or more chunks will not return the required result.For example, splitting into [5, 4], [3, 2, 1] will result in [4, 5, 1, 2, 3], which isn't sorted.

Example 2:

Input: arr = [2,1,3,4,4]Output: 4Explanation:We can split into two chunks, such as [2, 1], [3, 4, 4].However, splitting into [2, 1], [3], [4], [4] is the highest number of chunks possible.

Note:

  • arr will have length in range [1, 2000].
  • arr[i] will be an integer in range [0, 10**8].

769. Max Chunks To Make Sorted的拓展,这一题可以有重复的数字。

解法:能形成块儿的数字之和跟排序后的数组的相同长度的子数组的数字之和是相同的。

Algorithm: Iterate through the array, each time all elements to the left are smaller (or equal) to all elements to the right, there is a new chunck.

Use two arrays to store the left max and right min to achieve O(n) time complexity. Space complexity is O(n) too.
This algorithm can be used to solve ver1 too.

Java:

class Solution {    public int maxChunksToSorted(int[] arr) {        int n = arr.length;        int[] maxOfLeft = new int[n];        int[] minOfRight = new int[n];        maxOfLeft[0] = arr[0];        for (int i = 1; i < n; i++) {            maxOfLeft[i] = Math.max(maxOfLeft[i-1], arr[i]);        }        minOfRight[n - 1] = arr[n - 1];        for (int i = n - 2; i >= 0; i--) {            minOfRight[i] = Math.min(minOfRight[i + 1], arr[i]);        }        int res = 0;        for (int i = 0; i < n - 1; i++) {            if (maxOfLeft[i] <= minOfRight[i + 1]) res++;        }        return res + 1;    }}  

Python:

def maxChunksToSorted(self, arr):        res, c1, c2 = 0, collections.Counter(), collections.Counter()        for a, b in zip(arr, sorted(arr)):            c1[a] += 1            c2[b] += 1            res += c1 == c2        return res

C++:

class Solution {public:    int maxChunksToSorted(vector
& arr) { int res = 0, sum1 = 0, sum2 = 0; vector
expect = arr; sort(expect.begin(), expect.end()); for (int i = 0; i < arr.size(); ++i) { sum1 += arr[i]; sum2 += expect[i]; if (sum1 == sum2) ++res; } return res; }};

C++:

class Solution {public:    int maxChunksToSorted(vector
& arr) { int res = 1, n = arr.size(); vector
f = arr, b = arr; for (int i = 1; i < n; ++i) f[i] = max(arr[i], f[i - 1]); for (int i = n - 2; i >= 0; --i) b[i] = min(arr[i], b[i + 1]); for (int i = 0; i < n - 1; ++i) { if (f[i] <= b[i + 1]) ++res; } return res; }};

C++:

class Solution {public:    int maxChunksToSorted(vector
& arr) { int res = 1, n = arr.size(), curMax = INT_MIN; vector
b = arr; for (int i = n - 2; i >= 0; --i) b[i] = min(arr[i], b[i + 1]); for (int i = 0; i < n - 1; ++i) { curMax = max(curMax, arr[i]); if (curMax <= b[i + 1]) ++res; } return res; }};

C++:

class Solution {public:    int maxChunksToSorted(vector
& arr) { stack
st; for (int i = 0; i < arr.size(); ++i) { if (st.empty() || st.top() <= arr[i]) { st.push(arr[i]); } else { int curMax = st.top(); st.pop(); while (!st.empty() && st.top() > arr[i]) st.pop(); st.push(curMax); } } return st.size(); }};

  

类似题目:

  

  

转载于:https://www.cnblogs.com/lightwindy/p/10474712.html

你可能感兴趣的文章
poj3624
查看>>
Javascript获取URL参数值
查看>>
Bzoj1072--Scoi2007排列perm
查看>>
压缩跟踪(CT)代码具体学习_模块1(样本的採集和扩充)
查看>>
地理常识
查看>>
GB28181出内网
查看>>
学习设计模式 - 六大基本原则之迪米特法则
查看>>
IIS7上设置MIME让其支持android和Iphone的更新下载
查看>>
ios的分辨率统计
查看>>
读入优化与输出优化
查看>>
Android Drawable - Shape Drawable使用详解(附图)
查看>>
巨蟒python全栈开发flask3
查看>>
巨蟒python全栈开发flask13项目开始5
查看>>
p2psearcher绿色版使用方法
查看>>
PHP 序列化与反序列化
查看>>
【转】TCP粘包分析
查看>>
zoj-3872 Beauty of Array (dp)
查看>>
初学算法之快速幂
查看>>
【初探移动前端开发04】jQuery Mobile (中)
查看>>
Sublime Text3快捷键
查看>>